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ABSTRACT
Many bioinformatics applications would benefit from comparing proteins
based on their biological role rather than their sequence. In most biolog-
ical databases, proteins are already annotated with ontology terms. Pre-
vious studies identified a correlation between the sequence similarity and
the semantic similarity of proteins. The semantic similarity of proteins was
computed from their annotated GO terms. However, proteins sharing a bio-
logical role do not necessarily have a similar sequence.

This paper introduces our study of the correlation between GO and fam-
ily similarity. Family similarity overcomes some of the limitations of se-
quence similarity, thus we obtained a strong correlation between GO and
family similarity. Additionally, this paper introduces GraSM, a novel method
that uses all the information in the graph structure of the GO, instead of con-
sidering it as a hierarchical tree. When calculating the semantic similarity
of two concepts, GraSM selects the disjunctive common ancestors rather
than only using the most informative common ancestor. GraSM produced
a higher family similarity correlation than the original semantic similarity
measures.

Categories and Subject Descriptors: I.5.3 [Pattern Recognition]:
Clustering - Similarity measures; J.3 [Life and Medical Sciences]:
Biology and genetics

General Terms: Algorithms, Experimentation

Keywords: Family Correlation, Gene Ontology, Graph-based Sim-
ilarity Measure

1. INTRODUCTION
Given the increasing importance of biological ontologies, mech-

anisms enabling users to measure the similarity between the con-
cepts or, by extension, between the entities annotated with these
concepts are required. For example, they can be applied to improve
text mining systems [3, 7]. GO (Gene Ontology) has become one
of the most important ontologies to annotate proteins. GO provides
a structured controlled vocabulary of gene and protein biological
roles describing the following aspects: function, process and com-
ponent.

Many SS (Semantic Similarity) measures applied to ontologies
have been proposed. Resnik defined a SS measure based on the in-
formation content of the most informative common ancestor [8].
Jiang&Conrath proposed a semantic distance measure based on
the difference between the information content of the concepts and
the information content of their most informative common ances-

Copyright is held by the author/owner.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
ACM 1-59593-140-6/05/0010.

tor [4]. Lin proposed a SS measure based on the ratio between the
information content of the most informative common ancestor and
the information content of both concepts [5].

Recently, Lord et al. investigated the effectiveness of the SS
measures mentioned above over the GO [6]. The results have shown
that GO similarity is correlated with sequence similarity, i.e. they
have demonstrated the feasibility of using SS measures in a biolog-
ical setting. However, the performance of the similarity measures
has not been uniform over the different aspects of GO, and it has
not been consistent with previous studies using different corpora ei-
ther [1]. Sequence similarity is not the only kind of structural sim-
ilarity that can be computed between proteins. Family similarity is
also a structural similarity, which is normally based on experimen-
tal results about protein domains representing some evolutionarily
conserved structure with implications on the protein’s biological
role.

This paper outlines our main contributions:

• A study of the correlation between GO semantic similarity
and Pfam similarity. Pfam is a database of protein families
assigned to UniProt proteins. Pfam contains families manu-
ally curated and others automatically generated. Since pro-
teins from a same family share biological roles, we measure
the effectiveness of a SS measure defined over GO based on
its correlation with family similarity.

• GraSM (Graph-based Similarity Measure), a novel method
for incorporating the semantic richness of a graph by select-
ing disjunctive common ancestors of two concepts. Lord
et al. computed the SS measures using GO as an hierar-
chic structure, i.e. they only considered the most informative
common ancestor. However, GO is not organized as a tree-
like hierarchy but as a DAG (Directed Acyclic Graph), one
for each aspect. This permits a more complete and realistic
annotation. When all but the most informative common an-
cestor nodes are ignored, different possible interpretations of
the biologic concepts are disregarded. GraSM, on the other
hand, selects and uses all the disjunctive common ancestors
representing all interpretations.

2. GRASM
The SS measures mentioned above only use the most informative

common ancestor of both concepts. Therefore, when applied to a
DAG, these measures discard other common ancestors even if they
are disjunctive ancestors. Two common ancestors are disjunctive if
there are independent paths from both ancestors to the concept. By



Table 1: Correlation coefficients for each aspect of GO and each SS measure with and without using GraSM.
Resnik Jiang&Conrath Lin

original GraSM increase original GraSM increase original GraSM increase

Function 0.404 0.432 6.9% 0.535 0.543 1.5% 0.404 0.426 5.4%
Process 0.246 0.365 48.4% 0.697 0.725 4.0% 0.418 0.526 25.8%
Component 0.216 0.272 25.9% 0.306 0.310 1.3% 0.255 0.279 9.4%

independent paths we mean those that use at least one concept of
the ontology not used by the other paths. Therefore, two disjunctive
ancestors of a concept represent two distinct interpretations of a
concept. Calculating the similarity between two concepts using just
the most informative common ancestor only accounts for one of the
interpretations. However, similarity measures should also account
for other interpretations of both concepts.

GraSM selects all the common disjunctive ancestors of two con-
cepts in a DAG to calculate their similarity. GraSM considers that
a1 and a2 represent disjunctive ancestors of c if there is a path from
a1 to c not passing through a2 and a path from a2 to c not passing
through a1:

Dis jAnc(c) = {(a1,a2) |

(∃p : (p ∈ Paths(a1,c))∧ (a2 /∈ p))∧

(∃p : (p ∈ Paths(a2,c))∧ (a1 /∈ p))}.

Given two concepts c1 and c2, their common disjunctive ancestors
are the most informative common ancestor of disjunctive ancestors
of c1 and c2, i.e. a1 is a common disjunctive ancestor of c1 and
c2 if for each ancestor a2 more informative than a1, a1 and a2 are
disjunctive ancestors of c1 or c2:

CommonDis jAnc(c1,c2) = {a1 |

a1 ∈CommonAnc(c1,c2)∧

∀a2 : [(a2 ∈CommonAnc(c1,c2))∧ (IC(a1) ≤ IC(a2))] ⇒

[(a1,a2) ∈ (Dis jAnc(c1)∪Dis jAnc(c2))]}.

Original SS measures consider the shared information between
two concepts c1 and c2 as the information content of the most infor-
mative common ancestor. GraSM replaces this notion by defining
the shared information as the average of the information content of
the common disjunctive ancestors:

ShareGraSM (c1,c2) = {IC(a) | a ∈CommonDis jAnc(c1,c2)}.

3. ASSESSMENT
We evaluated the performance of each SS measure based on the

correlation between GO and family similarity. We defined the GO
similarity between two proteins as the average SS of the GO terms
annotated to them. However, since proteins have simultaneous bi-
ological roles, for each term annotated to a protein we compared it
only with the most similar term annotated to the other protein. We
tested the 500 proteins with the largest number of GO annotations
from the December 2004 release of Uniprot and GO.

Table 1 presents the correlation coefficients obtained by all SS
measures. The results show a strong correlation between GO and
family similarity. The correlation coefficients obtained in our study
are not directly comparable to the ones obtained by Lord et al.,
since we are measuring a different correlation using more recent
UniProt and GO releases. However, our study obtained a mea-
sures’ ranking that is preserved in all the aspects of GO and con-
sistent with previous studies using different corpora [1]. In all as-
pects, Jiang&Conrath’s measure have always obtained the strongest
correlation, and Lin’s measure have always obtained a stronger or

equivalent correlation than Resnik’s measure. This uniformity and
consistency demonstrates that family similarity is more appropriate
to validate SS measures than sequence similarity.

GraSM increased the correlation of all the SS measures tested.
This shows that using disjunctive ancestors to calculate the shared
information of two terms improves the effectiveness of SS mea-
sures. The improvement is proportional to the density of each
aspect of GO. This was expected, because having more relation-
ships per term increases the probability of having multiple com-
mon disjunctive ancestors. An ontology normally starts by adding
the terms and simple relationships to provide a complete coverage
of the target domain. Over time, the ontology tends to grow less
in the number of terms than in the number of relationships. We
believe that GO is not an exception, and therefore the quantity and
quality of the relationships will improve. Thus, we anticipate that
GraSM will improve more its effectiveness in relation to tree-based
SS measures as biologic knowledge is added to GO.

4. CONCLUSIONS
By obtaining a SS measures’ ranking that is uniform over all the

different aspects of GO and consistent with previous studies using
different corpora, we have provided a novel and stronger demon-
stration of the feasibility of SS measures in a biological setting.

By obtaining a higher correlation using disjunctive common an-
cestors than only using the most informative common ancestor, we
have demonstrated the higher effectiveness of GraSM for calculat-
ing semantic similarities between GO terms.

All the measures mentioned in this document were implemented
by FuSSiMeG (Functional Semantic Similarity Measure between
Gene-Products), which measures the functional similarity between
proteins based on the semantic similarity of the GO terms annotated
to them [2]. FuSSiMeG is available on the Web at:

http://xldb.fc.ul.pt/rebil/tools/ssm/
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